

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2015, TECHNICAL AND PROFESSIONAL TRADES

EXAM TITLE: Mathematics B

OPTIONS:

- Electricity (ELC)
- Construction (CST)
- Public Works (PWO)
- Motor Vehicle Mechanics (MVM)
- Electronics and Telecommunication (ETL)

DURATION: 3hours

INSTRUCTIONS:

The paper is composed of **two (2) Sections**:

Section I: Thirteen (13) questions, all Compulsory.

Section II: Five (5) questions, Choose Three (3) only.

<u>Every candidate is required to strictly obey the above</u> <u>instructions. Punishment measures will be applied to anyone</u> <u>who ignores these instructions.</u>

- Computer Electronics (CEL)
- Tailoring (TAL)
- General Mechanics (GME)

Page 1 of 4

55marks

45marks

Section I. Thirteen (13) Compulsory questions

55marks

- **01.** Factorize^{*} $4x^2 64$
- 2marks **02.** Calculate the derivative of $y = \frac{x^2+1}{x^2-1}$; $x^2 \neq 1$ 2marks
- **03.** The figure below represents an open rectangular box made of wood 1cm thick.

If the external dimensions of the box are 42cm long, 32cm wide and 15cm deep; and the internal measurement of the box are 40cm long, 30 cm wide and 14cm deep. Calculate the volume of wood in the box. 4marks

04. Calculate $\lim_{x\to\infty} \frac{e^{x}-1}{x}$	3marks
05. Calculate the size of each angle of a regular pentagon.	4marks
06. Solve in IR, $\log_6(x+4) + \log_6(x-2) = \log_6(4x)$	5marks
07. Given that $\vec{a} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}; \vec{b} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$	
Calculate:	
i. $2\vec{a}+\vec{b}$	3marks
ii. $ 2\vec{a}+\vec{b} $	2marks
08. Solve the following equation for $0 \le x \le 2\pi$	
$\cos 2x=3\sin x+2\pi$	5marks
09. A cuboid has 12cm of length, 8cm of width and 7cm of height.	
i. Calculate its area.	
ii. Find its volume.	5marks
10. Solve the following equation in R ²	5marks
$\begin{cases} y = 3x + 2 \\ 0 \end{cases}$	
y - x = 2	
11. Evaluate $\int \frac{3x+1}{\sqrt{4x^2+9}} dx$	5marks

12. i	i. Construct the triangle PQR in which PQ = 10cm, angle PQR = 4	0° and
é	angle, $PRQ = 75^{\circ}$	2marks
ii	i. Calculate the third angle of the triangle.	2marks
ii	ii. Calculate the area of the triangle if its height is 6cm.	1 mark
13. C	Given points P, Q, R in space, find the equation of the plane throu	gh
tl	he points. $P = (1, 1, 1), Q = (1, 2, 0), R = (-1, 2, 1).$	5marks
Section	on II. Answer any three (3) questions of your choice	
	(Do not choose more than <u>three questions</u>). 45mark	S
14, a	a. The third term of an Arithmetic Progression is 73 and the eight	
	terms is 13.	8
i.	. Find the common difference	6marks
i	i. Find the first	4marks
i	ii. Find the 12 th	2marks
. t	b. If $\vec{a} = 7\vec{i} + 8\vec{j}$ and $\vec{b} = 5\vec{i} - 2\vec{j}$; Find the scalar product $\vec{a} \cdot \vec{b}$	3marks
15. S	Solve the following system of linear equations using Cramer's methods:	
	$\begin{pmatrix} 3x + 4y + z = 10 \\ 2x + 5z = 0 \end{pmatrix}$	
	$\begin{cases} 2x - 3y + 5z = -9 \\ x + 2y - z = 6 \end{cases}$	15marks
16. A	A line passes through points A (2,-1, 5) and B(3,6,-4)	
	a) Write a vector equation of the line;	5marks
	b) Write parametric equations for the line;	6marks
	c) Determine if the point C (0,-15, 9) lies on the line.	4marks
17. a	a) Verify that arc $\tan \frac{1}{2} + \arctan \frac{1}{3} = \frac{\pi}{4}$	12marks
ł	b) Solve in IR: $9^x - 2.3^{x+1} = 27$	3marks
18. I	Let $f(x) = \frac{x+2}{x+1}$	
	a) Find domain of definition of f(x);	2marks
	b) Verify the parity;	2marks
	c) Calculate the boundary limits and relative asymptotes to $I(x)$; d) Find $f'(x)$ and its table of signs:	3marks
	e) Find $f''(x)$ and its table of signs;	2marks
ł	f) Sketch the graph of f(x).	3marks

Page 3 of 4